Nanpean CP School's Written Calculation Policy

Aligned with the 2014 National Curriculum

This calculation policy has been written in line with the programmes of study taken from the revised National Curriculum for Mathematics (2014). It provides guidance on appropriate calculation methods and progression. The content is set out in yearly blocks under the following headings: addition, subtraction, multiplication and division. Statements taken directly from the programmes of study are listed in bold at the beginning of each section.

The aims of this policy:

- To ensure consistency and progression in our approach to calculation.
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations.
- To ensure that children can use these methods accurately with confidence and understanding.

Early Years Foundation Stage

Statutory Framework 2021

Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10, the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.

Development Matters (July 2021)

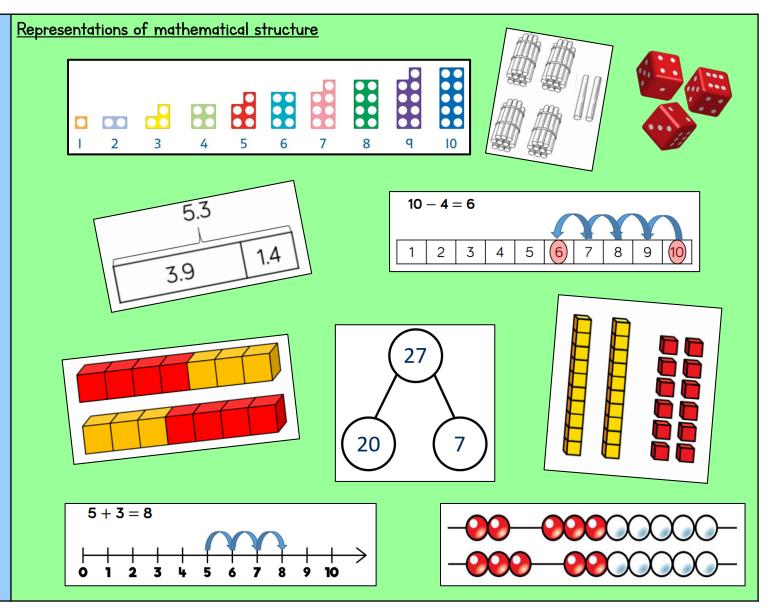
- ✓ count objects, actions and sounds
- √ subitise
- \checkmark link the number symbol (numeral) with its cardinal number value
- ✓ count beyond 10
- √ compare numbers
- ✓ understand the 'one more than or one less than' relationship between

consecutive numbers

- \checkmark explore the composition of numbers to 10
- ✓ automatically recall number bonds for numbers 0 to 5 and some to 10

ELG: Number

Children at the expected level of development will:


- Have a deep understanding of number to 10, including the composition of each number.
- Subitise (recognise quantities without counting) up to 5.
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.

Representations used across school

From Early Years to Year 6, we use a wide range of representations to support and develop a deep understanding of mathematical structure. Pupils have the opportunity in all year groups to utilise physical manipulatives to represent maths, as well as developing understanding through using the same manipulatives represented pictorially.

Whilst our calculation policy focuses on the use of tens frames and double-sided counters in EYFS and KSI, and place value grids and place value counters in Years 3-6 to support understanding of calculation, we believe that exposing pupils to a wide range of representations to demonstrate the mathematics is crucial in deepening mathematical understanding.

Addition

Expectations National Curriculum

Vocabulary √ addend

- √ addition
- √ sum
- √ total
- √ altogether
- ✓ How many more...?
- ✓ How much more...?
- √ equals
- √ the same as
- ✓ partition (splitting a number into its component parts)

Year I

- ✓ read, write and interpret mathematical statements involving addition (+) and equals (=) signs
- ✓ represent and use number bonds within 20
- \checkmark add one-digit and two-digit numbers to 20, including zero
- \checkmark solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems such as 15 = 1 + 6.

Year 2

- \checkmark solve problems with addition: to using concrete objects and pictorial representations, including those involving numbers, quantities and measure; applying their increasing knowledge of mental and written methods
- \checkmark recall and use addition facts to 20 fluently, and derive and use related facts up to 100
- \checkmark add numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- adding three one-digit numbers
- \checkmark show that addition of two numbers can be done in any order (commutative)
- \checkmark recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

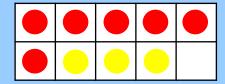
Sentence stems

- ✓ Adding one gives one more.
 - \checkmark When zero is added to a number, the number does not change
 - \checkmark When adding numbers, the total will be the same whichever pair we add first (commutative law).
 - \checkmark The whole is (number). One part is (number), so the other part must be (number). OR (number) is the whole, (number) is a part, (number) is a part.
 - ✓ First there were (number/ item). Then there were (number/ item) added Now there are (number/item)
 - ✓ There are (number/ item) and (number/ item). We can write this a (number) plus (number).
 - \checkmark (number) is equal to (number) plus (number). OR (number) plus (number) is equal to (number).
 - \checkmark There are (number/ item). There are (number/ item). There are (number/item/description) altogether.
 - √ (number) plus (number) is equal to ten.

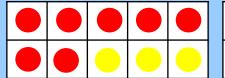
Vocabulary

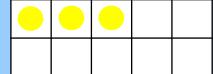
- √ commutative (numbers) can be added in any order)
- √ crossing the (tens) boundary or bridging
- ✓ exchange (change a number or expression for another of equal value)
- √ regrouping
- √ inverse

Sentence stems

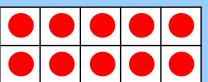

- \checkmark When adding numbers, we can add them in any order. (Commutative law – this can be applied to 2 or more addends.)
- √ (number) plus (number) is equal to (number) so (number) plus (number) is equal to (number).
- √ (number) minus (number) is equal to (number) so (number) minus (number) is equal to (number).
- \checkmark The value on both sides of the equals symbol must be the same.
- \checkmark When adding 10, the tens digit changes, the ones digit stays the same.
- \checkmark If (number) plus (number) is equal to (number), then (number) tens plus (number) tens is equal to (number) tens.
- \checkmark This is (number). Ten more than (number) is (number). (number) is ten more than (number)

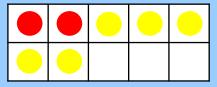
Year I


Add two one-digit numbers and a two-digit and one-digit number to 20, including zero.

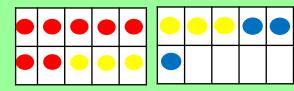

Load double-sided counters from left to right, top row to bottom row; red side of counter for first addend and yellow side of counters for second addend.

One-digit + one-digit (not crossing ten) Example: 6 + 3 = 9




One-digit + one-digit (crossing ten) Example (two frames): 7 + 6 = 13

Two-digits + one-digit (crossing ten) Example (two frames): 12 + 5 = 17

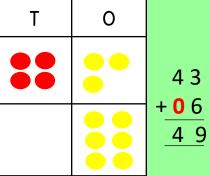

Year 2

Add three one-digit numbers.

Add three one-digit numbers.

Blue counters for third addend

Example: 7 + 6 + 3 = 16


Add up to two-digit numbers.

Two-digit + one-digit (not crossing ten)

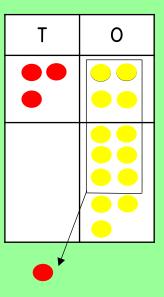
Example: 43 + 6 = 49

Use place value grid, loading the first addend on the top row with PV counters, tens then ones, followed by the second addend on the bottom row. Add the ones, then the ten.

Model the columnar method alongside.

National Curriculum Expectations

Year 2


Add up to two-digit numbers.

Two-digit + one-digit (crossing ten)

Example: 34 + 9 = 43

Use place value grid, loading the first addend on the top row with PV counters, tens then ones, followed by the second addend on the bottom row. Add the ones, showing the regrouping with PV counters.

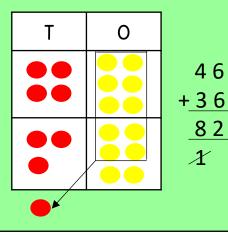
Model the columnar method alongside.

Two-digit + two-digit (not crossing ten)

Example: 43 + 25 = 68

Use place value grid, loading the first addend on the top row with PV counters, tens then ones, followed by the second addend on the bottom row. Add the ones, then the tens.

Model the columnar method alongside.


Т	0	
		43+25
		68

Two-digit + two-digit (crossing ten)

Example: 46 + 36 = 82

Use place value grid, loading the first addend on the top row with PV counters, tens then ones, followed by the second addend on the bottom row. Add the ones, showing the regrouping with PV counters.

Model the columnar method alongside.

Addition

Expectations

Curriculum

National

\checkmark add and subtract numbers mentally, including:

- a three-digit number and ones
- a three-digit number and tens

Year 3

- a three-digit number and hundreds
- \checkmark add numbers with up to three digits, using formal written methods of columnar addition
- \checkmark estimate the answer to a calculation and use inverse operations to check answers
- ✓ solve problems, including missing number problems, using number facts, place value, and more complex addition

Year 4

✓ add and subtract numbers with up to 4 digits using the formal written methods of columnar addition where appropriate

- \checkmark estimate and use inverse operations to check answers to a calculation
- \checkmark solve addition two-step problems in contexts, deciding which operations and methods to use and why.

Year 5 and Year 6

Year 5:

- \checkmark add whole numbers with more than 4 digits, including using formal written methods (columnar addition)
- \checkmark add numbers mentally with increasingly large numbers
- \checkmark use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- \checkmark solve multi-step problems in contexts, deciding which operations and methods to use and why.

Year 6:

- \checkmark perform mental calculations, including with mixed operations and large numbers
- \checkmark use their knowledge of the order of operations to carry out calculations involving the four operations
- \checkmark solve multi-step problems in contexts, deciding which operations and methods to use and why

Vocabulary

\checkmark addend (a number to be added to another)

- √ sum
- √ minuend (a quantity or number from which another is subtracted)
- \checkmark subtrahend (a number to be subtracted from another)
- √ complement (in addition, a number and its complement make a total e.g. 300 is the complement of 700 to make 1000)
- ✓ exchange (change a number or expression for another of an equal value)
 (plus previous)

Sentence stems

- \checkmark Addend plus addend equals the sum.
- ✓ Minuend minus subtrahend is equal to the difference.
- √ When using column addition start with the right most column.
- √ (number) one(s) add (number)
 one(s) is equal to (number)
 one(s)
- $\sqrt{\text{(number) ten(s)}}$ add (number) ten(s) is equal to (number) ten(s).
- For 35 + 23. 5 ones add 3 ones is equal to 8 ones. 3 tens add 2 tens is equal to 5 tens.
- \checkmark When adding, if the (ones/ tens/ hundreds) is equal to (10/ 100/ 1,000 etc.), we must regroup to the column on the left.

Vocabulary

- √ addend (a number to be added to another)
- √ sum
- √ minuend (a quantity or number from which another is subtracted)
- ✓ subtrahend (a number to be subtracted from another)
- √ complement (in addition, a number and its complement make a total e.g. 300 is the complement of 700 to make 1000)
- ✓ exchange (change a number or expression for another of an equal value)
 ✓ regrouping

(plus previous)

Sentence stems

✓ For calculations involving addition and subtraction, we can add then subtract or subtract then add. The final answer will be the same.

Vocabulary

- √ additive
- ✓ estimation✓ approximate
- (plus previous)

Sentence stems

- ✓ If one addend is increased by an amount and the other addend is decreased by the same amount, the sum remains the same.
- \checkmark If one addend is changed by an amount and the other addend is kept the same, the sum changes by that amount.
- \checkmark If you have increased or decreased the minuend and subtrahend by the same amount, the difference stays the same.
- \checkmark When a whole is split into equal parts, it can be both an additive and a multiplicative number sentence.
- \checkmark The sum of the two known parts plus the missing part is equal to the whole.
- √ (First number) rounds to (number).
- √ (Second number) rounds to (number).
- √ When (adding/ subtracting) (first number) to/from (second number) the answer will be approximately (number).

Promote checking answers using the inverse operation.

Expectations Curriculum

Addition

National

Year 3

Add numbers with up to three-digits using formal written methods of columnar addition.

Use place value grids and counters as concrete and pictorial strategy.

Two-digit + two-digit

Example: 47 + 76 = 123

Three-digit + three-digit (no regrouping):

Example: 456 + 123 = 579

Three-digit + three-digit (with regrouping):

Example: 385 + 386 = 771

11

Year 4

Add numbers with up to four-digits using formal written methods of columnar addition.

Use place value grids and counters as concrete and pictorial strategy.

Four-digit + four-digit

No regrouping

Example: 2,123 + 3,456 = 5,579

One regroup:

Example: 3,456 + 5,289 = 8,745

More than one regroup:

Example: 7,777 + 8,888 = 16,665

1111

Year 5 and Year 6

Add numbers with more than four-digits including using formal written methods (columnar addition).

Use place value grids and counters as concrete and pictorial strategy.

Examples with multiple regrouping:

2,668,777 + 2,776,899 = 5,445,676

2668777

+ 2776899

5445676

XXXXXX

Add decimals (including whole numbers and decimals, decimals with different numbers of decimal places and compliments of l (e.g. 0.17 + 0.83 = 1)) using formal written methods (columnar addition)

Decimals with same number of decimal places

Example: 12.49 + 18.75 = 31.24

11 1

Decimals with different number of decimal places

108.400

005.756

11

114.156

Add in place holders to 'BOX' the calculation.

National Curriculum

Expectations

Subtraction

Year

- \checkmark read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- \checkmark represent and use number bonds and related subtraction facts within 20
- \checkmark subtract one-digit and two-digit numbers to 20, including zero
- ✓ solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = 2 9.

Year 2

- ✓ solve problems with subtraction:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measure
- applying their increasing knowledge of mental and written methods
- \checkmark recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
- \checkmark subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- \checkmark show that subtraction cannot be done in any order
- \checkmark recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

Vocabulary

- √ how many more...
- √ how much more...
- √ subtract
- √Subtrahend, minuend,
- difference
- ✓ take away
- √ left (left over)
- √ fewer
- √ difference
- √ minus
- √ equals
- √ the same as

Sentence stems

- √ Subtracting one gives one less.
- \checkmark When zero is subtracted from a number, the number does not change.
- √ (number) is equal to (number) subtract (number). OR (number) subtract (number) is equal to (number)
- \checkmark The difference between (number) and (number) is (number).
- \checkmark There are (number/ item) and (number/item) are taken away. We can write this as (number) subtract (number).
- \checkmark First there were (number), then (number) were subtracted, (number) were left.

Vocabulary

- √ crossing the (tens)
 boundary
- √ exchange
- √ regrouping

Sentence stems

- \checkmark (number) minus (number) is equal to (number) so (number) minus (number) is equal to (number). There are two ways to use this:
- 10 minus 7 is equal to 3 so 11 minus 7 is equal to 4. OR 10 minus 7 is equal to 3 so 20 minus 7 is equal to 13.
- \checkmark The value on both sides of the equals symbol must be the same.
- \checkmark The more we subtract, the less we are left with.
- \checkmark The less we subtract, the more we are left with
- \checkmark When subtracting 10, the tens digit changes, the ones digit stays the same.
- \checkmark If (number) plus (number) is equal to (number), then (number) tens plus (number) tens is equal to (number) tens.

If 3 plus 2 is equal to 5, then 3 tens plus 2 tens is equal to 5 ten.

 \checkmark This is (number). Ten more than (number) is (number). (number) is ten more than (number).

This is 5. Ten more than 5 is 15. 15 is ten more than 5.

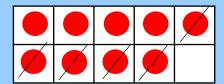
 \checkmark If (number) minus (number) is equal to (number), then (number) tens minus (number) tens is equal to (number) tens.

calculation

Expectations

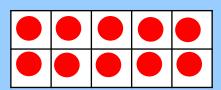
Curriculum

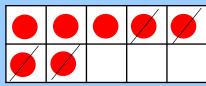
National


Promote checking answers using the inverse operation.

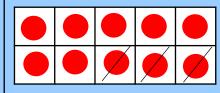
Year I

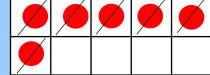
Subtract two one-digit numbers and a two-digit and one-digit number to 20, including zero.


Load double-sided counters from left to right, top row to bottom row; red side of counter for the minuend. Subtract the subtrahend by removing counters when working with the manipulatives, or by crossing out (single diagonal line) the subtrahend, bottom to top, right to left.

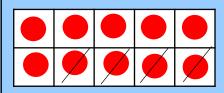

One-digit - one-digit Example: 9 - 5 = 4

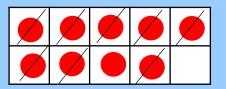
Two-digits - one-digit (not crossing ten)


Example (two frames): 17 - 4 = 13



Two-digits - one-digit (crossing ten)


Example (two frames): 16 - 9 = 7



Two-digits - two-digits

Example (two frames): 19 - 13 = 6

Promote checking answers using the inverse operation.

Expectations Curriculum National

Subtraction

Subtract ones from a two-digit number.

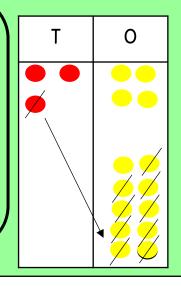
Two-digit - one-digit (not crossing ten)

Example: 49 - 6 = 43

Use place value grid, load the PV grid with the minuend. Subtract the subtrahend by crossing out the PV counters, ones then tens.

Т	0	
	* * * * * * * * * *	

09 **2**5


Model the columnar method alongside.

Two-digit - one-digit (crossing ten)

Example: 34 - 9 = 25

Use place value grid, load the PV grid with the minuend. Exchange one ten for ten ones, showing the ten ones in the ones column with a space to distinguish the exchange. Cross out the exchanged ten. Complete the subtraction of the ones, crossing out the subtrahend.

Model the columnar method alongside.

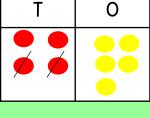
Subtract a tens number from a two-digit number.

Two-digit - tens

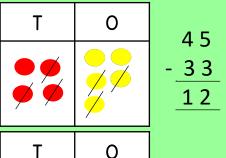
Example: 45 - 20 = 25

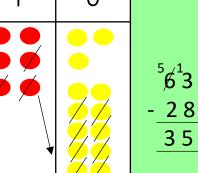
Use place value grid, load the PV grid with the minuend. Subtract the subtrahend by crossing out the tens PV counters. Model the columnar method alongside.

Subtract	two	two-diait	numbers


Two-digit - two-digit (not crossing ten) Example: 45 - 33 = 12

Use place value grid, load the PV grid with the minuend. Subtract the subtrahend by crossing out the PV counters, ones first, then tens. Model the columnar method alongside.


Two-digit - two-digit (crossing ten)


Example: 63 - 28 = 35

Use place value grid, load the PV grid with the minuend. Exchange one ten for ten ones, showing the ten ones in the ones column with a space to distinguish the exchange. Cross out the exchanged ten. Complete the subtraction of the ones, crossing out the subtrahend. Then complete the subtraction of the tens, crossing out the tens in the subtrahend. Model the columnar method alongside.

45 20 25

Curriculum

National

Year 5 and Year 6 Year 4 Year 3 Year 5: ✓ subtract numbers with up to 4 digits using the \checkmark subtract whole numbers with more than 4 digits, including using formal written methods (columnar ✓ subtract numbers mentally, including: formal written methods of columnar subtraction \checkmark subtract numbers mentally with increasingly large numbers o a three-digit number and ones where appropriate \checkmark use rounding to check answers to calculations and determine, in the context of a problem, levels of o a three-digit number and tens ✓ estimate and use inverse operations to check Expectations o a three-digit number and hundreds $\sqrt{}$ solve subtraction multi-step problems in contexts, deciding which operations and methods to use answers to a calculation √ subtract numbers with up to three digits, using formal and why \checkmark solve subtraction two-step problems in contexts, written methods of columnar subtraction deciding which operations and methods to use and Year 6: \checkmark estimate the answer to a calculation and use inverse $\sqrt{}$ perform mental calculations, including with mixed operations and large numbers operations to check answers \checkmark use their knowledge of the order of operations to carry out calculations involving the four √ solve problems, including missing number problems, using operations $\sqrt{}$ solve subtraction multi-step problems in contexts, deciding which operations and methods to use number facts, place value, and more complex subtraction and why Sentence stems Sentence stems Vocabulary Vocabulary Sentence stems Vocabulary \checkmark If one addend is increased by an amount and the other addend is √ minuend ✓ Minuend minus subtrahend is equal to the √ For calculations √ inverse decreased by the same amount, the sum remains the same. √ additive √ subtrahend \checkmark If one addend is changed by an amount and the other addend is kept involving both addition (plus previous) \checkmark When using column subtraction, start with the √ estimation the same, the sum changes by that amount. √ difference and subtraction, we can right most column. \checkmark If you have increased or decreased the minuend and subtrahend by the √ approximate √ (number) one(s) add (number) one(s) is equal add then subtract or √ exchange same amount, the difference stays the same. to (number) one(s) (plus previous) subtract then add. The \checkmark When a whole is split into equal parts, it can be both an additive and a (plus previous) $\sqrt{\text{(number) ten(s)}}$ add (number) ten(s) is equal to final answer will be the (number) ten(s). For 35 + 23.5 ones add 3 ones is multiplicative number sentence. equal to 8 ones 3 tens add 2 tens is equal to 5 \checkmark For a question where the whole is split into three parts and two of the same values are known. $\sqrt{\text{(number) one(s) subtract (number) one(s) is}}$ \checkmark The sum of the two known parts plus the missing part is equal to the equal to (number) one(s). $\sqrt{\text{(number) ten(s) subtract (number) ten(s) is}}$ \checkmark For a question where the whole is split into three parts and two of the equal to (number) ten(s). values are known, the whole minus the two known parts is equal to the For 35 - 23.5 ones subtract 3 ones is equal to 2 missing parts. ones. 3 tens subtract 2 tens is equal to I ten. √ (First number) rounds to (number). ✓ If we cannot subtract, we must exchange from √ (Second number) rounds to (number). the column to the left. \checkmark When (adding/ subtracting) (first number) to/from (second number) the answer will be approximately (number).

National Curriculum Expectations

Subtraction

Year 3

Subtract numbers with up to three-digits using formal written methods of columnar subtraction.

Use place value grids and counters as concrete and pictorial strategy.

Two-digit - two-digit (no exchange)

Two-digit - two-digit (exchange)

Example:
$$63 - 48 = 15$$

$$\begin{array}{r} 5 6 & 13 \\ -48 & 15 \\ \hline 15 & 15 \\ \hline \end{array}$$

Three-digit - three-digit (no exchange):

Example:
$$563 - 241 = 322$$
 563 $- 241 = 322$ 322

Three-digit - three-digit (exchange)

Example:
$$652 - 287 = 365$$

$$\begin{array}{r} 56 & 5 \\ 2 & 5 \\ \hline & 5 \end{array}$$

$$\begin{array}{r} -287 & 7 \\ \hline & 365 \\ \hline \end{array}$$

Three-digit - three-digit (subtracting from hundred with exchange):

Example:
$$600 - 255 = 345$$
 $\frac{56^{10}}{0}$ $\frac{1}{2}$ $\frac{5}{5}$ $\frac{5}{3}$ $\frac{4}{5}$

Year 4

Subtract numbers with up to four-digits using formal written methods of columnar subtraction.

Use place value grids and counters as concrete and pictorial strategy.

Four-digit - four-digit

No exchange

Example:
$$8,469 - 2,127 = 6,342$$

8 4 6 9

More than one exchange

Example:
$$7,503 - 3,278 = 4,225$$

$$7^{4}5 \cancel{0}^{19,1}3$$

$$- 3278$$

$$4225$$

Subtracting from thousand with exchange

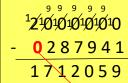
Example:
$$6,000 - 2,543 = 3,457$$

$${}^{5}6^{1}0^{1}0^{1}0$$

$$- 2543$$

$$- 3457$$

Year 5 and Year 6


Subtract whole numbers with more than four-digits using formal written methods (columnar subtraction).

Use place value grids and counters as concrete and pictorial strategy.

Example with exchanges:

Example subtracting from million:

NB. use of a number line to count on to subtract would be most efficient here but seeing the exchanges is important in deepening understanding

Add in place holders to 'BOX' the calculation.

Practise subtracting decimals, including a mix of integers and decimals, followed by decimals with different numbers of decimal places.

Decimals with same number of decimal places

5
6 1 3 . 6 $/^{1}$ 5
- $\frac{17.28}{46.47}$

Decimal subtracted from an integer

$$1^{3}\cancel{A} \cdot \cancel{0}^{1}\cancel{0}^{1}\cancel{0}$$

$$- \underbrace{03.692}_{10.308}$$

Expectations

Curriculum

National

Year

 \checkmark solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Multiplicative reasoning in Year I:

One bag holds five apples. How many apples will four bags hold?

Children represent multiplication as repeated addition in many different ways. In Year I, children use concrete and pictorial representations to solve problems. They are not expected to record multiplication formally.

Year 2

- \checkmark recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- \checkmark calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication
- (x) and equals (=) signs
- \checkmark show that multiplication of two numbers can be done in any order (commutative)
- ✓ solve problems involving multiplication using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts

Children represent multiplication as repeated addition in many different ways, including arrays.

In Year 2, children are introduced to the multiplication symbol.

Vocabulary

- ✓ lots of
- √ sets of
- √ groups of
- √ equal groups
- ✓ patterns
- ✓ double
- √ doubling
- √ twice as much as...
- √ twos
- √ fives
- √ tens
- ✓ skip counting

Sentence stems

Equal groups/ unequal groups

- ✓ There are (number)

 groups/lots/sets of (number/ item).
- ✓ This is not (number)
- groups/lots/sets of (number/ item) as
- they are not equal groups.

<u>Double</u>

- ✓ Double (number) is (number).
- ✓ Twice as much as (number) is

Vocabulary

- √ times
- √ multiplication
- √ multiply
- √ multiplied by
- √ multiple of
- √×
- **/** =
- √ array
- √ row
- √ column
- √ repeated addition
- \checkmark ten/five times as
- √ much/many as...
- √ once, twice, three
- √ times... ten times
- √ multiplication facts
- \checkmark multiplication table
- ✓ commutative law✓ commutativity
- √ calculation
- \checkmark equation

Sentence stems

- \checkmark (number) groups/lots/sets of (number) is the same as (number) times/multiplied by/x (number), which equals/= (number).
- $\sqrt{}$ (number) is a multiple of (number) because it is in the (number) times table.
- \checkmark (number) cannot be in the (number) times table because...
- \checkmark Multiplication is commutative you can swap the numbers in the calculation/equation.

Repeated Addition (array)

- \checkmark There are (number) groups of (number/item). (number) + (number) = (number).
- There are (number/ item) altogether.
- $ec{\ \ \ \ }$ There are (number) lots of (number/ item). There are (total/ item) altogether.
- $\sqrt{\text{(number a)} \times \text{(number b)}} = \text{(number b)} \times \text{(number a)}$
- \checkmark In this array, there are (number/ item) in each row. There are (number) rows of (number/ item). So (number) x (number) = (total)

In this array, there are 5 oranges in each row. There are 6 rows of 5 oranges. So 5×6 = 30 [Link to fact family: $30 \div 5 = 6$ and $30 \div 6 = 5$]

 \checkmark In this array, there are (number/ item) in each column. There are (number) columns of (number/ item). So (number) x (number) = (total)

Promote checking answers using the inverse operation.

Curriculum

Expectations

Multiplication

Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals (=) signs

Year 2

First formal methods for recording multiplication

6 x 5 = 30 $5 \times 6 = 30$

 $8 \times 2 = 16$ $2 \times 8 = 16$

A deep understanding of the meaning of the multiplication precede the introduction of these mathematical statements; the statements vill also be represented through use of arrays and other concrete and pictorial epresentations.

Year 3

Multiply a 2-digit number by a ldigit number using a formal written method.

Pupils practise becoming fluent in the formal written method of short multiplication *using the* times tables they know.

Use place value grids and counters as concrete and pictorial strategy.

	<u>'</u>	37
Н	Т	0
	10 10 10	1
	10 10 10	1
	10 10 10	1
100		

6l x 3 = 183

 $14 \times 5 = 70$

$$\begin{array}{c|cc}
1 & 4 \\
x & 5 \\
\hline
7 & 0 \\
\cancel{2}
\end{array}$$

Year 4

Multiply 2-digit and 3-digit numbers by a ldigit number using a formal written method.

Pupils practise their fluency in the formal written method of short multiplication using ALL times table facts.

Use place value grids and counters as concrete and pictorial strategy.

Н	Т	0
100 000	10 10 10	1
100 100	10 10 10	1
100 000	10 10 10	1
100		

251 x 3 = 753

456 x 7 = 272

Year 5

Multiply numbers up to 4-digits by a l or 2-digit number using a formal written method, including long multiplication when multiplying by 2digit numbers.

Short method: 4-digit x I-digit

Multiplying decimals (short method):

Long multiplication: 2-digit x 2-digit

Pupils practise their fluency in the formal written method of short multiplication using ALL times table facts.

Year 6

Multiply multi-digit numbers up to 4-digits by a 2-digit integer using the formal written method of long multiplication.

Multiply a 1-digit numbers with up to 2decimal places by a 1-digit integer.

Long multiplication: 3-digit x 2-digit

Long multiplication: 4-digit x 2-digit

Pupils practise their fluency in the formal written method of short multiplication using <u>ALL</u> times table facts.

Year

 \checkmark solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Expectations

Curriculum

National

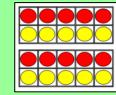
Multiplicative reasoning in Year I and 2 -SHARING

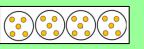
There are 20 apples altogether. They are shared equally between 5 bags. How many apples are in each bag?

Children solve problems by sharing amounts into equal groups.

In Year I, children use concrete and pictorial representations to solve problems.

They are not expected to record division formally.


Year 2


- \checkmark recall and use division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- \checkmark calculate mathematical statements for division within the multiplication tables and write them using the division (\div) and equals (=) signs
- \checkmark show that division of one number by another cannot be done in any order
- \checkmark solve problems involving division, using materials, arrays, repeated addition, mental methods, and division facts, including problems in context

Multiplicative reasoning in Year I and 2 -GROUPING

There are 20 apples altogether. They are put into bags of 5. How many bags are there?

Vocabulary

- √ equal groups of
- √ equal lots of
- √ equal sets of
- √ grouping
- ✓ share equally
- √ sharing
- √ share
- √ half
- √ halves
- √ halvina
- ✓ half as much/
- ✓ many as...
- ✓ arrays
- √ row
- √ column
- √ patterns

Sentence stems

<u>Grouping</u>

- ✓ One group of (number), two groups of (number), three groups of (number).
- \checkmark Each (item) can hold (number/ item). (number/ item) will need (number/ item).
- \checkmark There are (number) equal groups of (number). There are (number) altogether

<u>Sharing</u>

- \checkmark One for you, one for you, one for you,...
- \checkmark (number/ item) have been shared equally into (number) groups/ lots/sets.
- \checkmark There are (number/ item) in each group/lot/set. OR each group/lot/set has (number/item).
- √ (number/ item) have not been shared equally between (number) groups/lots/ sets There
- are not equal groups/lots/sets of (item).
- \checkmark Share (number) equally between (number) groups. Each group has (number).

<u>Array</u>

- \checkmark (number/ item) have been used to make this array. There are (number) rows of
- (number/ item)
- \checkmark (number/ item) have been used to make this array. There are (number) columns of
- (number/ item)

<u>Hal</u>

√ Half of (number) is (number).

Vocabulary

- √ division
- √ divide
- √ divided by
- √ divided into
- √ repeated
- √ subtraction
- √ left over
- \checkmark one each, two
- ✓ each, three each...
- √ ten each
- √ group in pairs,
- √ threes... tens
- √ multiple
- √ division facts
- √ commutative law
- √ commutativity
- √ calculation
- \checkmark equation
- √÷
- **√** =

Sentence stems

 \checkmark Division is not commutative – you cannot swap the numbers around in the calculation/equation and reach the same answer.

Grouping

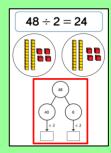
- \checkmark (number a) can be put into groups of (number b). This is the same as (number a) being divided into groups of (number b), which equals (number c). This can be written as (number a) \div (number b) = (number c)
- √ (number a) divided by (number b) equals (number c).

<u>Sharing</u>

- \checkmark (number a) can be shared equally between (number b) groups/lots/etc. This is the same as (number a) shared into (number b) groups/lots/set, which equals (number c). This can be written as (number a) \div (number b) = (number c)
- \checkmark (number a) can be shared equally into (number b) groups/lots/sets because
- \checkmark (number a) can be shared equally into (number b) groups because (number a) is a multiple of (number b).
- $\sqrt{\ }$ (number a) cannot be shared into (number b) groups/lots/sets because there is/dre(number c) left over.

	Year 3		Year 4		Year 5 and Year 6		
National Curriculum Expectations	multiplication tables ✓ write and calculousing the multiplicative-digit numbers to progressing to form ✓ solve problems, involving division, incompleted.	ate mathematical statements for division tion tables that they know, including for times one-digit numbers, using mental and hal written methods including missing number problems, cluding positive integer scaling problems to problems in which in objects are		acts for multiplication tables up to 12 × 12, known and derived facts to divide mentally,	Year 5: \[\frac{\text{Year 5:}}{\text{ Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers} \]		expectations, Key
Division	Vocabulary ✓ threes ✓ fours ✓ eights ✓ product ✓ remainder ✓ short division ✓ scaling (integer) ✓ quarter ✓ third ✓ eighth	Sentence stems Using known facts ✓ I know that (number a) ÷ (number b) = (number a) ✓ (number a) ÷ (number b) = ?, this means? x (number b) = (number a) ✓ If (number a) x (number b) = (number c), then (number c) tens ÷ (number b) = (number a) d) tens, so (number c x IO) ÷ (number b) = (number a x IO). ✓ If (number a) ÷ (number b) = (number c), then (number a) tens ÷ (number b) = (number c) tens, so (number a x IO) ÷ (number b) = (number c x IO) Divide by 4 and 8 ✓ To divide a number by 4, I can half the number and half the answer. ✓ To find a quarter of something is the same as dividing by 4. ✓ To divide something by 8, I can halve, halve and halve again. Remainder ✓ (number a) is not in the (number b) times tables; when you divide (number a) by (number b) there is a remainder of (number c).	Vocabulary vinverse dividend divisor quotient divisible by dividing by 10, 100 factor factor pair	Sentence stems \[\sqrt{The dividend is the number you are dividing \(\) The divisor is the number you are dividing by. \(\) The quotient is the answer to a division fact. \(\frac{Factor/Factor pairs and multiples}{} \) (number a) \(\div \) (number c), so (number b) and (number c) are factors of (number a). \(\) The product of (number a) and (number b) is (number c), so (number a) and (number b) are a factor pair of (number c). \(\) (number a) is a multiple of both (number b) and (number c). \(\frac{Inverse}{} \) I know that (number a) \(\div \) (number b) = (number a). \(\frac{Dividing by 10, 100}{} \) When dividing by (10 or 100), the number is being split into (10 or 100) equal parts. The number is (10 or 100) times smaller. \(\) When dividing by 10, we move the digits one place to the right. \(\) When dividing by 100, we move the digits two places to the right. \(\) There are (number) tens in (number). \(\frac{Divide by 1}{} \) Dividing anything by I gives the same number as this is just one group of anything.	Vocabulary √ common factors √ prime √ prime factors √ composite numbers √ dividing by IO, IOO and I,000 Year 6 specific vocabulary: √ indices (powers) √ lowest common multiple √ brackets √ order of operations (BIDMAS)	Year 5: Divisible by √ (number a) is a multiple of (number b) This means that (number a) is divisible by (number a) is divisible by (number b) because (number b) x (number c) = (number a) Common factors √ The factors of (number a) are √ The factors of (number b) are √ The common factors of (number a) and (number b) are Composite numbers √ A composite number is not prime, it has more than two factors. Dividing by I,000 √ When dividing by I,000, the digits move three places to the right. √ When dividing by I,000, the number is I,000 times smaller. Year 6: Highest common factor ✓ The highest common factor (HCF) is the largest common factor of given numbers. ✓ The common factors of (number) and (number) are – the HCF is (number). Bracket ✓ A bracket is used to tell us which part of an equation to do first according to BIDMA BIDMAS ✓ BIDMAS tells us the order in which to complete a calculation. We do Brackets, Indice Division & Multiplication, Addition and Subtraction.	and Oracy

Expectations


Year 2

Calculate mathematical statements for division within the multiplication tables and write them using the signs + and =

> 6 ÷ 2 = 3 20 ÷ 5 = 4

18 ÷ 2 = 9

Dividing 2-digits by I-digit:

When dividing larger numbers, children can use manipulatives to allow them to partition into tens

and ones. Base IO can be used to share numbers into equal groups. Part-whole models provide children with a clear written method that matches the concrete representation.

Year 3

Write and calculate mathematical statements for division using the multiplication tables that pupils know, including for 2 digit numbers times I digit numbers.

Pupils develop reliable written methods for division starting with calculations of 2 digit by I digit and progression to the formal written methods of short division.

Use place value grids and counters as concrete and pictorial strategy.

000	00000
Tens	Ones
	000
0	000
0	000
0	000

2-digit divided by I-digit:

2-digit divided by I-digit with remainders:

000	00000	00
Tens	Ones	
0	000	
0	000	
0	000	•
0	000	

$$53 \div 4 = 13 \text{ r. } 1$$

$$1 \quad 3 \quad \text{r. } 1$$

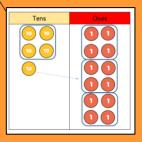
$$4 \quad 5^{1}3$$

Year 4

Pupils practise to become fluent in the formal written method of short division with exact answers.

Children can continue to use place value counters to share 3-digit numbers into equal groups. Children should start with the equipment outside the place value grid before sharing the hundreds, tens and ones equally between the rows. This method can also help to highlight any remainders.

3=digit divided by I-digit (sharing):

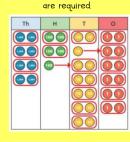

844 ÷ 4 = 214

211

Grouping:

When using the short division method, children use grouping. Starting with the largest place value, they group by the divisor.

Language is important here and children should consider 'How may groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?' Remainders can also be seen as they are left ungrouped.



Year 5

Divide numbers up to 4 digits by a 1 digit number using the formal written method of short division and interpret remainders appropriately for the context.

4-digit divided by I-digit (grouping)

Place value counters can be used to support understanding but should be moved away from when multiple exchanges

 $8,532 \div 2 = 4,266$ $4 \ 2 \ 6 \ 6$ $2 \ 8 \ 5^{1}3^{1}2$

Short method that will have a decimal remainder:

e.g. £456 ÷ 5 = £9120
0 9 1 . 2

$$5 [4^45 6]^10$$

Additional <u>place holder</u> for the quotient as money always has 2 decimal places.

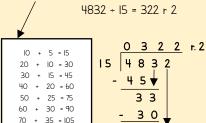
Year 6

Divide numbers up to 4 digits by a 2 digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.

Divide numbers up to 4 digits by a 2 digit number using the formal written method of short division where appropriate, interpreting remainders according to the context.

Pupils are introduced to the division of decimal numbers by I digit whole number, initially, in practical contexts involving measures and money.

Formal


written

methods

र्व

calculation

Long division 4-digit divided by 2-digit:
Pupils begin by gathering partitioned multiples.

80 + 40 = 120

90 + 45 = 135

Short division 4-digit divided by 2-digit: Pupils gather partitioned multiples first.

- 30

Decimal by single digit: 267.75 + 5 = 53.55 0.53.55 $5 2^{2}6^{17}.7^{2}5$

Whole number by single digit with decimal quotient: